R³ is selected from the group consisting of hydrogen, halogen, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkynyl, (C₄)alkoxy, —B(OH)₂, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkyl(C₁-C₄)alkyl-, (C₆-C₁₀)bicycloalkyl, heterocycloalkyl, heterocycloalkyl(C1-C4)alkyl-, phenyl, phenyl (C_1-C_2) alkyl, heteroaryl, heteroaryl (C_1-C_2) alkyl, cyano, $-C(O)R^a$, $-CO_2R^a$, $-C(O)NR^aR^{\overline{b}}$, $-C(O)NR^aNR^aR^b$, $--S(O)R^a$, $-SO_2NR^aR^b, \text{ nitro, } -NR^aR^b, R^aR^bN(C_1-C_4)\text{alkyl-,} \\ -NR^aC(O)R^b, -NR^aC(O)NR^aR^b, -NR^aC(O)OR^a, \\ -NR^aSO_2R^b, -NR^aSO_2NR^aR^b, -NR^aNR^aR^b,$ $-NR^aNR^aC(O)R^b$, $-NR^aNR^aC(O)NR^aR^b$, $-NR^aN R^aC(O)OR^a$, $-OR^a$, $R^aO(C_1-C_4)$ alkyl-, $R^aO(C_3-C_6)$ alkynyl-, $-OC(O)R^a$, and $-OC(O)NR^aR^b$, wherein each cycloalkyl, bicycloalkyl, heterocycloalkyl, phenyl, or heteroaryl group is optionally substituted 1, 2, or 3 times, independently, by R^c — (C_1-C_6) alkyl-O—, R^c (C_1-C_6) alkyl-S—, R^c — (C_1-C_6) alkyl-, (C_1-C_4) alkylheterocycloalkyl-, halogen, (C₁-C₆)alkyl, (C₃-C₆)cyhalo(C_1 - C_6)alkyl, cyano, — $C(O)R^a$ — $C(O)NR^aR^b$, — $S(O)R^a$, — SO_2R^a cloalkyl, $--C(O)R^a$ $-C(O)NR^aR^b$, $-CO_2R^a$ $-SO_2^2NR^aR^b$, nitro, $-NR^aR^b$, $-NR^aC(O)R^b$ $\begin{array}{lll} -NR^aC(O)NR^aR^b, & -NR^aC(O)OR^a, & -NR^aSO_2R^b, \\ -NR^aSO_2NR^aR^b, & -OR^a, & -OC(O)R^a, & -OC(O) \end{array}$ NR^aR^b, heterocycloalkyl, phenyl, heteroaryl, phenyl (C_1-C_2) alkyl, or heteroaryl (C_1-C_2) alkyl;

 R^4 is hydrogen, (C_1-C_4) alkyl, or hydroxy (C_2-C_4) alkyl-; each R^c is independently — $S(O)R^a$, — SO_2R^a , — NR^aR^b , — $NR^aC(O)OR^a$, — $NR^aSO_2R^b$, or — CO_2R^a ; and

- R^a and R^b are each independently hydrogen, (C_1-C_4) alkyl, $hydroxy(C_1-C_4)alkyl-, (C_1-C_4)alkoxy(C_1-C_4)alkyl-,$ (C₃-C₆)cycloalkyl, (C₆-C₁₀)bicycloalkyl, heterocycloalkyl, phenyl, phenyl(C₁-C₂)alkyl-, heteroaryl(C₁-C₄)alkyl-, or heteroaryl, wherein any said cycloalkyl, bicycloalkyl, heterocycloalkyl, phenyl, or heteroaryl group is optionally substituted 1, 2, or 3 times, independently, by halogen, hydroxyl, (C₁-C₄)alkoxy, amino, $-NH(C_1-C_4)$ alkyl, $-N((C_1-C_4)$ alkyl)₂, -NH(halo (C_1-C_4) alkyl), $-N(halo(C_1-C_4)$ alkyl)₂, $-N((C_1-C_4)$ alkyl)(halo(C_1 - C_4)alkyl), (C_1 - C_4)alkyl, halo(C_1 - C_4) alkyl, hydroxy(C_1 - C_4)alkyl-, (C_1 - C_4)alkoxy(C_1 - C_4) alkyl-, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl (C_1-C_4) alkyl-, heterocycloalkyl optionally substituted by one or two halogens, heterocycloalkyl(C1-C4)alkyl-, heteroaryl optionally substituted by (C1-C4)alkyl, heteroaryl(C_1 - C_4)alkyl- optionally substituted by (C_1 - C_4) alkyl, (C_1 - C_4)alkoxycarbonyl(C_1 - C_4)alkyl-, — CO_2 H, $-CO_2(C_1-C_4)$ alkyl, $-CONH_2$, $-CONH(C_1-C_4)$ alkyl, $-CON((C_1-C_4)alkyl)_2$, $-SO_2(C_1-C_4)alkyl$, $-SO_2NH_2$, $-SO_2NH(C_1-C_4)$ alkyl, or $-SO_2N((C_1-C_4))$ C_4)alkyl)₂;
- or R^a and R^b taken together with the nitrogen to which they are attached represent a 5- or 6-membered saturated or unsaturated ring, optionally containing an additional heteroatom selected from oxygen, nitrogen, and sulfur, wherein said ring is optionally substituted 1, 2, or 3 times, independently, by (C₁-C₄)alkyl, halo(C₁-C₄) alkyl, amino, —NH(C₁-C₄)alkyl, —N((C₁-C₄)alkyl)₂, hydroxyl, oxo, (C₁-C₄)alkoxy, or (C₁-C₄)alkoxy(C₁-C₄) alkyl-, wherein said ring is optionally fused to a (C₃-C₆) cycloalkyl, heterocycloalkyl, phenyl, or heteroaryl ring;
- or R^a and R^b taken together with the nitrogen to which they are attached represent a 6- to 10-membered bridged

- bicyclic ring system optionally fused to a (C₃-C₆)cycloalkyl, heterocycloalkyl, phenyl, or heteroaryl ring; or a pharmaceutically acceptable salt thereof.
- 2. The compound or pharmaceutically acceptable salt according to claim ${\bf 1},$ wherein ${\bf X}$ is CH.
- 3. The compound or pharmaceutically acceptable salt according to claim 1, wherein R^1 is hydrogen, halogen, (C_1-C_6) alkyl, halo (C_1-C_4) alkyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkyl (C_1-C_4) alkyl, phenyl, or phenyl (C_1-C_2) alkyl.
- **4**. The compound or pharmaceutically acceptable salt according to claim 1, wherein R^1 is (C_1-C_4) alkyl.
- $\begin{array}{lll} \textbf{5.} & \text{The compound or pharmaceutically acceptable salt according to claim 1, wherein R^2 is (C_3-C_6) alkoxy, (C_3-C_6) cycloalkyloxy-, heterocycloalkyloxy-, heterocycloalkyl, $$-NH((C_3-C_6)$ cycloalkyl), $$-N((C_1-C_3)$ alkyl)((C_3-C_6)$ cycloalkyl), or $$-N((C_1-C_3)$ alkyl)$ (heterocycloalkyl), wherein any said (C_3-C_6) alkoxy, (C_3-C_6) cycloalkyloxy-, heterocycloalkyloxy-, heterocycloalkyloxy-, heterocycloalkyl, or (C_3-C_6) cycloalkyl is optionally substituted 1 or 2 times, independently, by halogen, hydroxyl, (C_1-C_3) alkoxy, amino, $$-NH(C_1-C_3)$ alkyl, $-N((C_1-C_3)$ alkyl)_2, (C_1-C_3) alkyl, (C_1-C_3) alkyl-, amino(C_1-C_3)$ alkyl-, $((C_1-C_3)$ alkyl-, $((C_1-C_3)$ alkyl-, (C_3-C_8) cycloalkyl, cyano, $$-CO_2R^a$, $$-C(O)NR^aR^b$, $$-SO_2NR^aR^b$, phenyl, or heteroaryl. $$$
- **6.** The compound or pharmaceutically acceptable salt according to claim **1**, wherein R^2 is (C_3-C_6) alkoxy, (C_3-C_8) cycloalkyloxy-, or heterocycloalkyloxy-, each of which is optionally substituted by hydroxyl, (C_1-C_3) alkoxy, amino, $-NH(C_1-C_3)$ alkyl, $-N((C_1-C_3)$ alkyl)₂, (C_1-C_3) alkyl, $-CO_2R^a$, $-C(O)NR^aR^b$, $-SO_2NR^aR^b$, phenyl, or heteroaryl.
- 7. The compound or pharmaceutically acceptable salt according to claim 1, wherein R^2 is cyclopentyloxy, cyclohexyloxy, pyrrolidinyloxy, piperidinyloxy, and tetrahydropyranyloxy, each of which is optionally substituted by hydroxyl, (C_1-C_3) alkoxy, amino, $-NH(C_1-C_3)$ alkyl, $-N((C_1-C_3)$ alkyl), $-CO_2R^a$, $-C(O)NR^aR^b$, $-SO_2NR^aR^b$, phenyl, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrazinyl, or pyrimidinyl, wherein R^a is (C_1-C_4) alkyl or phenyl (C_1-C_2) alkyl and R^b is hydrogen or (C_1-C_4) alkyl.
- **8**. The compound or pharmaceutically acceptable salt according to claim **1**, wherein R^2 is (C_1-C_4) alkoxy, cyclohexyloxy, or $-NR^aR^b$, wherein said cyclohexyloxy is optionally substituted by amino, $-NH(C_1-C_3)$ alkyl, or $-N((C_1-C_3)$ alkyl)₂.
- 9. The compound or pharmaceutically acceptable salt according to claim 1, wherein R^2 is $-NR^aR^b$.
- 10. The compound or pharmaceutically acceptable salt according to claim 9, wherein R^a is hydrogen, methyl, ethyl, cyclohexyl, tetrahydropyranyl, or piperidinyl, wherein said cyclohexyl is optionally substituted 1 or 2 times, independently, by fluorine, amino, dimethylamino, diethylamino, or morpholinyl, and wherein said piperidinyl is optionally substituted by methyl, ethyl, isopropyl, 2,2,2-trifluoroethyl, 3,3, 3-trifluoropropyl, 2-hydroxyethyl, 1,3-dihydroxypropan-2-yl, cyclopropylmethyl, (1-methyl-1H-pyrazol-3-yl)methyl, (6-methylpyridin-2-yl)methyl, 1-ethoxy-2-methyl-1-oxopropan-2-yl, or methylsulfonyl; and R^b is hydrogen, methyl, or ethyl.